Department of Electrical (Electronics and Power) Engineering

B.E. 5th Sem

Course: Power System- I Course Code: (5EP01)

At the end of Power System- I course the student will be able:

CO1: To determine the parameters of transmission lines.

CO2: To evaluate the performance of transmission line

CO3: To describe transmission lines voltage control and power factor Improvement Methods.

CO4: To explain representation of power system, Ferranti effect and corona phenomenon

CO5: To demonstrate various Insulators, its string efficiency & underground cables.

Course: Microprocessors & Microcontroller Course Code: (5EP02)

At the end of Microprocessors & Microcontroller course the student will be able:

CO1: To recite Fundamentals and Architecture of Microprocessor 8085, Microcontroller 8051.

CO2: To interpret Assembly Language Programming of Microprocessor 8085, Microcontroller 8051.

CO3: To illustrate interfacing with Microprocessor 8085, Microcontroller 8051

CO4: To apply knowledge of Microprocessor 8085 for measurement of Electrical quantities

CO5: To discuss Fundamentals and Architecture of Microprocessor 8086

CO6: To explain Fundamentals and Architecture of Microprocessor 805

Course: Electrical Machines – II Course Code: (5EP03)

At the end of Electrical Machines – II course the student will be able:

CO1: To describe the construction, working operation & performance characteristics of three phase Induction Motor.

CO2: To analyze the starting, braking and speed control of three phase induction motors by various methods.

CO3: To describe the construction, working operation & performance characteristics of single-phase Induction Motor.

CO4: To demonstrate the construction, working operation & performance characteristics of synchronous machine.

CO5: To explain the construction & working of special motors like Universal, Reluctance, PMSM & BLDC Motor.

Course: Signals and Systems (PE-I)

Course Code: (5EP04)

At the end of Signals and Systems course the student will be able:

CO1: To demonstrate knowledge of continuous-time and discrete-time signals and systems.

CO2: To analyze the continuous-time systems using continuous Time Fourier transform.

CO3: To explain the concept of sampling, Sampling Theorem, aliasing and the Nyquist rate.

CO4: To analyze DT systems & their realization using Z-transforms.

CO5: To analyze the discrete time systems using DTFT and DFT.

Course: Power Supply System (OE-I) Course Code: (5EP05)

At the end of Power Supply System course, the student will be able:

CO1: To describe the Structure of Power system.

CO2: To explain construction and working of various generation plants ·

CO3: To describe layout and working of Substations ·

CO4: To compare various power distribution system

CO5: To explain Electrical wiring required for various Installations

B.E. 6th Sem

Course: Power Electronics Course Code: (6EP01)

At the end of Power Electronics course student will be able:

CO1: To explain the concepts and techniques used in power electronics

CO2: To apply the knowledge of series and parallel connection of SCRs in power control Applications.

CO3: To analyze various single phase and three phase power converter circuits

CO4: To analyze the single phase and three phase Inverter circuits

CO5: To explain the operation of DC/DC and AC/AC converter circuits

CO6: To demonstrate the applications of power electronic circuits.

Course: Electrical Energy Distribution & Utilization Course Code: (6EP02)

At the end of Electrical Energy Distribution & Utilization course student will be able:

CO1: To demonstrate the knowledge of distribution substation

CO2: To compare different power distribution systems

CO3: To describe elements of distribution Automation system

CO4: To select proper electrical drive for industrial applications

CO5: To explain the working of electric traction system

CO6: To describe an illumination system & electric heating

Course: Computer Aided Electrical Machine Design Course Code: (6EP03)

At the end of Computer Aided Electrical Machine Design course student will be able:

CO1: To explain the Basics of Computer aided machine design & material selection.

CO2: To derive the design parameters of single & three phase transformer core.

CO3: To calculate the winding& cooling system parameters of the transformer

CO4: To develop the armature winding diagram for three phase Induction Motor

CO5: To determine the stator core dimensions of three phase Induction motor

CO6: To design the squirrel cage & wound type rotor for three phase Induction motor.

Course: Advanced Control Systems (PE-II)

At the end of Advanced Control Systems course student will be able:

CO1: To design compensator using time domain and frequency domain specifications

CO2: To represent system using state space model

CO3: To analyze controllability and observability for systems and design full state feedback controller.

Course Code: (6EP04)

CO4: To analyze digital systems using Z Transform.

CO5: To develop the describing function for the nonlinearity to assess the stability of the system.

CO6: To analyze the nonlinear system using Phase plane Analysis.

Course: Energy Audit and Management (OE-II) Course Code: (6EP05)

At the end of Energy Audit and Management course student will be able:

CO1: To discuss energy scenario and its management.

CO2: To conduct the energy audit of different systems.

CO3: To determine the economics of energy conservation.

CO4: To discuss various energy Conservation methods & their case studies.

CO5: To explain fundamentals of Harmonics.